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Abstract

The project we have undertaken is the application deep reinforcement learning
technique of Deep Q-Networks (DQN) on a classic Atari 2600 game, Space
Invaders. This has been achieved by transforming the Q-learning algorithm such
that it is compatible with high dimensional states which an image contains. We
developed a Convolutional Neural Network which provided an optimize Q-policy
and experimented with hyper-parameters to obtain the best model. Finally, we
concluded that the best model we trained was a DQN with preprocessed image
frame and experience replay batch size of 16 with training duration of one day.
We furthered our understanding of deep reinforcement learning by looking into
advanced methods like Double and Dueling DQNs and Inverse Reinforcement
Learning but have not implemented them due to time and computation constraints.

1 Introduction

Programming and controlling an intelligent agent to learn and play a game with human-level or
beyond human-level skills has been a long-standing challenge!’). It has been traditionally solved
using Reinforcement Learning which utilizes sequential data to learn policies which maximize the
cumulative future record. As its performance heavily relies on the quality of the hand-crafted features
(which are combined with linear value functions or policy representations?!), researchers had to
observe leading players and design feature based on their strategies.

While combining deep learning and reinforcement learning, we can encounter certain issues. From
a deep learning perspective, we require large amounts of labelled training data, however, for rein-
forcement learning we are only able to learn from scalar rewards. Furthermore, a delay between
action and reward is an undesirable feature for deep learning models where there is direct association
between the inputs and targets. Finally, the assumption of data samples as independent entities can
cause problems for reinforcement learning module as utilizes highly correlated states.

However, with the recent advancements and increase in use of deep learning techniques and super-
computers with heavy computational power, we are no longer required to manually design features as
it allows us to extract high level features from raw data. The intervention of Convolutional Neural
Networks (CNNs) in the system architecture allows the reinforcement learning algorithm to learn
policies from raw image frame data. This combined architecture of CNN and reinforcement learning
algorithm (Q-learning) is known as the Deep Q-Networks!!).

In this project, we will be developing and training a DQN to play the Atari game, Space Invaders and
analyze our performance based on score value per episode for them. We will be implementing our
DQN on The Arcade Learning Environment (ALE) Atari 2600 RL testbed which provides us with
an agent and high-dimensional visual input (210 x 160 RGB video at 60Hz). The network was not
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provided with any specific information about the game. The only inputs provided were the video
input, the reward, the terminal signal and the set of all possible actions.

2 Background

2.1 Q-Learning

With the provided sequence of states, actions and rewards we are required to learn an optimal strategy
to maximize our reward for each game-play. As we have a sequence of rewards, the rewards obtained
at every step is discounted by a factor . This is defined as
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In order to learn an optimal strategy in a practical setting, we minimize the squared loss function

L= %" (Qopt(s.a) = (r+7Vope(s)) 2)
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and the Q-function is estimated using functional approximation. As in practice we do not generalize
unseen states and actions, we minimize the loss function using gradient descent for learning weights
w. It is updated as

w = w = 1(Qopt(s,a) — (r+YVopt(s))) (s, a) 3)
2.2 Deep Q-Learning

The approach we have implemented is training directly from high dimensional raw input, using
updates based on stochastic gradient descent. The large amount of data from each image frame
inputted in the deep neural networks allows us to learn better representation as compared to the
hand-crafted features.

The technique of experience replay helps us estimate the value function by updating the parameters
of the network. In this, we store the agent’s experience at each time-step e; = (¢, ag, r¢, S¢11) in a
dataset D = ey, ..., ey, experienced over many episodes in a replay memory. When we implement
Q-learning, we only update the batch of sample experiences which are chosen at random from the
stored dataset D. Following completion of experience replay, the agent selects and executes an action
based on the e-greedy policy.

The approach has many advantages over standard Q-learning. Firstly, it enables better data efficiency
as the experience at each step is used to update weights. Secondly, in Q-learning we directly learn
from consecutive samples which is inefficient due to their high correlation and it reduces the variations
in updates.

Another technique that has been proved to speed up the training process is frame skipping!2. The
agent only looks at the nth frame instead of all the frames. This helps the agent to play n times more
episodes for the same amount of time and computation power.

3 Problem Description

In the Space Invaders game, we have an agent which we train by interacting with the environment.
This is achieved by discretizing the game-play into time-steps where the agent chooses an action from
alist of actions A = 1,2, ... N. The chosen action is then applied to the current state of environment
which translates to the new state. During this transition, we are provided with an updated reward r;
and new state s;41. A formal definition of each component of data is described below:

1. State s: At any given time-step ¢, state s; is an observation which is a matrix representing
the image frame in an RGB format with the size of 210 x 160 x 3.

2. Action a: It is the input provided by the agent to the environment and can be an integer
in the range [1, N| where, N = 6 for Space Invaders. The actions are named as {FIRE,
RIGHT, LEFT, RIGHTFIRE, LEFTFIRE, NOOP}.



3. Reward r: This is the output returned by the environment after an action is taken. It has
been boundaries as [—1, 1].

4 Data and Experiments

4.1 DQN Implementation

The implementation has been achieved by creating two classes — one for Deep Q-Network and the
other for the Agent. We have used PyTorch for implementing our Convolutional Neural Network for
its simple and easy to write syntax. The Deep Q-Network class, DeepQNetwork contains the init()
function which is the main initializer for the CNN. The CNN encompasses three convolutional layers,
two funlly connected layers and a stochastic gradient descent (SGD) optimizer. We calculate the
loss after applying SGD. We also incorporate the functionality for using GPU if the CUDA parallel
computing platform is available on the system. A detailed description of each layer is described below:

Layer Type Input No. of Filters  Filter size ~ Stride Padding Output
Convl 1 32 8 4 1 32
Conv2  Convolutional 32 64 4 2 64
Conv3 64 128 3 128
Fcl Fully Connected 128x19x8 512
Fc2 512 6

Table 1: Layers of CNN

The next function for the DeepQNetwork class is the forward() function which defines a multi-
dimensional matrix known as tensor for the sample set of observations and passes those observations
to the previously defined three convolutional layers with rectification linear unit, ReLU working at
each layer. Finally, we apply the fully connected layers to the observation to get the final action for
that time-step.

For the agent class, Agent we initialize the Agent object in the initializer function init(). The next
function is the storeTransition() function which stores all the rewards and states in the central
memory until the maximum memory size is reached. The function choose Action() implements
neural network we previously defined to evaluate the optimal Q learning policy for a sampled set of
observations. This is the implementation of Experience Replay. The learn() function implements
the standard Q learning algorithm on the Q values learned from the neural network.

Our experimentation study has been divided into three spheres:

1. Effect of Pre-processing on training time: In the first phase, we develop two DQNs — one
with pre-processing and one without it. The pre-processing included converting the RGB
image for each time-step frame input to grayscale. This is expected to reduce the training
time.

2. Training duration analysis: We trained our model for two different time duration — 5 hours
and 28 hours and analyzed its effect on the game-play.

3. Effect of Experience Replay batch sizes on training time and game-play: We imple-
mented Experience Replay for batch sizes 8, 16 and 32.

5 Discussion and Analysis

5.1 Strategies learned by agent

The agent learned various strategies for different training sessions. The most intriguing and fruitful
strategies are enumerated below:

1. Destroying Mothership: For some of the sessions in the training, the agent learns to boost
its score by 225 points by aiming at the mothership. The difficulty point for this strategy is
that the mothership does not necessarily appear in every game and is a fast moving target.
In order to successfully aim and hit the mothership, the agent has to retract its focus from



the other smaller ships and follow the mothership. Mastering this strategy is quite difficult
and require rigorous train, thus, it has only been seen in the 28-hours training session. The
biggest drawback for this strategy is that, when the agent abandons other ships, it allows
the fleet of smaller ships to destroy the barriers and reach to the bottom of game-screen
which automatically ends the game. Therefore, it is important to maintain a healthy balance
between the mothership chase and destroying the fleet.

Figure 1: Destroying the mothership

2. Destroying fleet of smaller ships column-wise: The strategy is comparatively easier to
master and efficient as it provides better reward than randomly shooting the targets. This is
because, by simultaneous firing on a column of space ships, it saves precious game-time and
is able to eliminate more ships from the fleet before they reach the bottom of game-screen.
We have observed this training strategy in short-training duration (5 hours) and smaller batch
sizes of experience replay.

Figure 2: Destroying fleet column-wise

3. Dodging the fire: The strategy has been learning in both long-term (28-hours) and short-
term (5-hours) training scenarios. This is because a single shot leads to loss of life which is
a highly negative reward and thus, is undesirable. At the end of the long-term training, we
observe that the agent has learned at which exact location the shot will be fired and is able
to dodge shots in close proximity.

5.2 Hyper-parameter Selection Criteria

1. e-greedy: In order to maintain a healthy balance between exploratory and exploitation move,
we maintain the value e greedy. The optimal policy is chosen with the probability 1 — ¢ and
the random policy with e. This is altered at certain intervals of episodes from 1.0 to 0.05
over the complete course of training. This enables more exploration moves in the earlier
stages of training and more exploitation moves over the end of the training.

2. e-end: The e-end value determines the lowest value to which our e-greedy value can reach.
This has been set to 0.05 which is usually achieved around the twentieth episode. It allows



the agent from this stage onward to concentrate on exploitation actions and acquire maximum
attainable reward.

3. Discount Factor :The discount factor v provides us a measure of the extent of distant
future the algorithm looks to. We have chosen a high v value of 0.95 as it allows us to take
very distant future rewards into consideration. A new technique of choosing discount factor
dynamically[” could be implemented, however, this was not performed in order to keep
things simple.

4. Learning Rate «: For the purpose of a more reliable training, very low value of learning
rate o must be chosen. This is because a higher o value may not lead to convergence or
worse make it diverging due to minima overshooting and making loss worse. We have
chosen our « value as 0.003 which serves its purpose quite well. However, a better way
of selecting an optimal a-value is to start training the network with low learning rate and
decrease it by exponential factor when it starts reaching the gradient minima in later stages
of training®!.

5. Batch Size: The batch size of a neural network training session should be selected as a
trade-off between efficiency of training and noisiness of the gradient estimate. We have
experimented with three batch sizes - 8, 16 and 32.

5.3 Comparison of DQNs with and without preprocessed raw data

Image frame preprocessing from RGB to gray-scale provides a massive boost in terms of cutting down
computation time. From the figure below, we observe that we are able to play around 2000 episodes
in 2-hours, providing an average game time to be 0.06 minutes whereas the non-preprocessed version
is only able to play 50 episodes in 5 hours, providing an average game time to be 6 minutes. Thus,
we can conclude that the image frame processing provides a 99% reduction in computation time.
Furthermore, the highest reward obtained by the preprocessed DQN is 915 (obtained within 2 hours)
as compared to the non-preprocessed DQN with 450 (obtained after training for 5 hours).

Score and Epsilon v/s Episode for Non-Processed Images for Training Duration = 5 hours

Score and Epsilon v/s Episode for Preprocessed Images for Training Duration = 2 hours
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Figure 3: Effect of Preprocessing image data

5.4 Comparison of Training Duration

The figure below shows the comparison between long-term (28-hours) and short-term (5-hours)
training sessions as well as the learning trend with change in epsilon. We observe that as the value
of epsilon decreases from 1 to 0.05, the score steadily increases as shown in the first figure. This is
an expected outcome as the agent starts to adhere to more exploitative actions in the later episodes,
leading to higher reward. When we compare the outcomes of different training duration, we observe
that highest reward obtained by the agent trained for 28 hours is 760 and for 5 hours is 450 however,



there is no significant difference between the training outcomes in terms of final aggregated reward -
222 for long-term training and 214 for short-term training.

Score and Epsilon v/s Episode for Training Duration = 28 hours and Batchsize = 32 0

Score and Epsilon v/s Episode for Training Duration = 5 hours and Batchsize = 32
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Figure 4: Comparison of Training Duration

This can be attributed to the fact that the highest reward outcomes are most likely are an outcome
when the agent is successful in shooting the mothership. As discussed earlier, the instances of such
occurrences is overall very low and therefore, for the majority of episodes this is rather unlikely to
happen. However, the incidents of such occurrences increase when we train longer, justifying the fact
that it is learning the ’destroying mothership strategy’ though not efficiently.

5.5 Comparison of Batch Sizes for Experience Replay

Score and Epsilon v/s Episode for Training Duration = 3 hours and Batchsize = 16
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Figure 5: Comparison of Batch Sizes for Experience Replay



The figure above shows the training progression with different Experience Replay batch sizes. We
observe that there is a comparable performance for batch sizes 32 and 16 with highest rewards
episodes obtaining 450 and 460 respectively. The maximum reward for batch size 8 (excluding
outliers) is 190, therefore, its the worst performer of the lot. We also observe that as we decrease
batch size for experience replay, the training duration decreases corresponding to same number of
game-play episodes. Thus, in order to balance the trade-off between training duration and maximizing
reward the best batch size is 16 which provides an optimal training in less time.

5.6 Problems Encountered and Drawbacks of DQN

1. Analyzing the strategies is difficult for the agent: This problem has been attributed to
the fact that our DQN training duration is comparatively lower than the average training
duration in literature and limited computational power of the CPU in MacBook Pro.

2. DQN training is slow: Neural Networks take long time to learn and require high compu-
tational power. Therefore, they are very slow when it comes to training. Running speed
depends on the game state updated after agent makes an action. This issue was resolved by
changing the original 210x160x3 RGB image into gray-scale.

3. More efficient exploration strategy required: Balancing “Exploration” and “Exploring”
is the essential problem of Reinforcement Learning, which requires us to design more
efficient exploration strategies. We overcame this problem by defining a dynamic e-greedy
value which decreases from 1 to 0.05 over the course of training.

4. Reward Shaping has a huge impact on the performance of DQN. As there is a big lag
between the action and reward (multiple image frames), it is difficult to obtain an instant
feedback for a particular action taken by the agent. In order to mitigate this, we need to
insert feedback signals during the training of the model which helps to partially overcome
the problem of too sparse feedback. The application of Inverse Reinforcement Learning’s
GAN technique (described later) has been proven to alleviate this problem!?!.

6 Conclusion and Future work

6.1 Conclusion

In this report we discussed about the methods implemented to train our agent to learn to play a classic
Atari 2600 game, Space Invaders. We implemented Deep Q-Networks for training and analyzed it
over various hyper-parameters. We fixated values for certain hyper-parameters like discount factor
v as 0.95 and learning rate « as 0.003 as they have been already proven to be the best in literature.
The hyper-parameters we experimented with were batch size, e-greedy and training time duration.
Furthermore, we performed a comparative study for preprocessed and non-preprocessed data in terms
of accuracy and computation cost. After successful training with variety of hyper-parameters, we
observed our trained agent implementing strategies it learned over the training period. The most
prominent among them were - destroying mothership, column-wise destruction of fleet of smaller
ships and dodging the fire. Finally, after careful consideration of all model performance, we arrive to
the solution that a model with preprocessed image frames trained with a DQN of experience replay
of batch size 16 for about a day would be the most efficient model in terms of computational power
and time.

6.2 Future Work

1. Double DQN: The one-step Q-learning algorithm implemented has a major drawback when
it comes to estimating action value. It sometimes fails to meet the actual high value of
an action value functions as the maximum step in it tends to be highly valued leading
to overestimation. This results in overoptimistic value estimates. The reason behind is
the insufficient flexibility of the function approximation and noise. This issue can be
alleviated by implementing double DQN. It helps create a Q-learning function which can be
generalized to arbitrary approximation functions!4.

The Double Q-learning function corrects the overestimation by storing two sets of weights
0 and ¢’. Thus, for every stage of update, one set of weights are utilized to calculate the



greedy policy and the other set for calculating its value. This can be represented as
YfQ = r+’yQ(S/7 argma'x(l/7Q(Sl7a/70)’0/) (4)

2. Dueling DQN: Dueling-DQN improves DQN from the network structure, and the action
value function can be divided into state value function and dominant function,

Q"(s,a) = V7(s) + A" (s, a) (5)

using the neural network approximation for these two functions.

The advantage function, Q) (s, a) — Vz(s) evaluates the current action value function relative
to the average. Therefore, the advantage here refers to the advantage of the action value
function compared to the value function of the current state. If the advantage function is
greater than zero, the action is better than the average action. If the advantage function is
less than zero, the current action is not as good as the average action.

3. Prioritized Replay Buffer: DQN’s empirical playback uses a uniform distribution, while

evenly distributed sampling does not make efficient use of data. Because the experience
of the agent is the data that has been experienced, but the data is not equally important for
training. The efficiency of the agent in some states is higher than that of other states.
An ideal criterion is that the efficiency of the agent learning is higher and the weight is
greater. Larger the TD deviation, larger is the difference between the value function and the
TD target at this state, and greater is the update amount of the agent and thus, the learning
efficiency is higher.

4. Inverse Reinforcement Learning: The domain consists of the following techniques(®!:

(a) Linear programming: It aims to reproduce the model by enciphering possible states.

(b) Maximum Entropy method: In this method, the features of each state are quantified
and inputted in the equation for reward. It is considered a more practical solution than
linear pro gramming[g] .

(c) Hostile Inverse Reinforcement Learning: It focuses on GAN (Genetic Conflict Network)
technology, which is particularly remarkable in the field of deep learning. GAN is a
network in which two networks, a network to judge and evaluate (Discriminator) and a
network to generate patterns (Generator), are combined. This feature is often useful
for solving inverse reinforcement learning problems. The problems of conventional
inverse reinforcement learning are concentrated on the point that "complex problems
are difficult to imitate". Here, the “complex task” refers to a task that has a large amount
of information of the state to be observed, and the variation of the change of the state
is enormous. For example, in the case of not only oneself, but also the other party’s
state, and there are multiple opponents (Shogi or Go, a game facing multiple enemy
characters, etc.), the state has a large amount of information, and the state Variations
of transition from to the state will be a tremendous combination. When it comes to
such “complex tasks”, we cannot catch up with the expressive and learning abilities of
conventional reverse reinforcement learning/?!.
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